DESCRIPTION

Summary

Modeled implicitly (the shape is completely described with an equation) via Mathematica using basic geometries and Boolean Operations.

The main shape is created with a Boolean Addition of a Mobius Strip to a Sphere.

InstructionsThe model code used in MathematicaBase code courtesy of Professor Mark Ganter

(Boolean Join)
join[f, g] := Min[f, g]
(Boolean Cut)
cut[f, g] := Max[f, -g]

(Translations)
transX [f, s] := f /. x -> (x - s)
transY [f, s] := f /. y -> (y - s)
transZ[f, s] := f /. z -> (z - s)

(Rotate)
rotateRZ[f, a] := f /. {x -> xCos[a] + ySin[a], y -> -xSin[a] + yCos[a]}
rotateZ[f, a] := rotateRZ[f, d2R[a]]

(Declaring a Primitive Geometry: Sphere)
sphere[rad_] := x^2 + y^2 + z^2 - rad^2

(Declaring a Primitive Geometry: Mobius strip - http://www.wolframalpha.com/input/?i=mobius+strip+Cartesian+equation)
mobius[a_] := -a^2 y - 2 a x z + x^2 y - 2 x^2 z + y^3 - 2 y^2 z +
y z^2

(Creating a geometry: muckabout3)
muckabout3 = cut[sphere[2.75], mobius[3]]

(Creating a geometry: trasn2rotatma3)
rotatemuckabout3 = rotateZ[muckabout3, 180]
transrotatema3 = transY[rotatemuckabout3, -0.5]
trans2rotatema3 = transX[transrotatema3, 0.5]

(Creating a geometry: trans2rotatma13)
transrotatema13 = transY[muckabout3, 0.5]
trans2rotatema13 = transX[transrotatema13, -0.5]

(Joining two geometries together)
joinedmuckabout3 = join[trans2rotatema13, trans2rotatema3]

(Creating a geometry: transrttma32)
muckabout32 = cut[sphere[6], mobius[3]]
rotatemuckabout32 = rotateZ[muckabout32, 180]
transrotatema32 = transX[rotatemuckabout32, 3]
transrtransma32 = transY[transrotatema32, 1]
transrttma32 = transZ[transrtransma32, -2.75]

(Joining two geometries together)
joinmuck3s = join[joinedmuckabout3, transrttma32]

(plot the model for a preview)
plt = ContourPlot3D[joinmuck3s == 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}

(export your model as an STL file)
Export[ISMmodel1.stl, plt, STL]

The Resulting Equation

Max[-7.5625 + x^2 + y^2 + z^2, 9 y - x^2 y - y^3 + 6 x z + 2 x^2 z + 2 y^2 z - y z^2]
Max[-7.5625 + x^2 + y^2 + z^2, -9 y + x^2 y + y^3 - 6 x z + 2 x^2 z + 2 y^2 z + y z^2]
Max[-7.5625 + x^2 + (0.5 + y)^2 + z^2, -9 (0.5 + y) + x^2 (0.5 + y) + (0.5 + y)^3 - 6 x z + 2 x^2 z + 2 (0.5 + y)^2 z + (0.5 + y) z^2]
Max[-7.5625 + (-0.5 + x)^2 + (0.5 + y)^2 + z^2, -9 (0.5 + y) + (-0.5 + x)^2 (0.5 + y) + (0.5 + y)^3 - 6 (-0.5 + x) z + 2 (-0.5 + x)^2 z + 2 (0.5 + y)^2 z + (0.5 + y) z^2]
Max[-7.5625 + x^2 + (-0.5 + y)^2 + z^2, 9 (-0.5 + y) - x^2 (-0.5 + y) - (-0.5 + y)^3 + 6 x z + 2 x^2 z + 2 (-0.5 + y)^2 z - (-0.5 + y) z^2]
Max[-7.5625 + (0.5 + x)^2 + (-0.5 + y)^2 + z^2, 9 (-0.5 + y) - (0.5 + x)^2 (-0.5 + y) - (-0.5 + y)^3 + 6 (0.5 + x) z + 2 (0.5 + x)^2 z + 2 (-0.5 + y)^2 z - (-0.5 + y) z^2]
Min[Max[-7.5625 + (0.5 + x)^2 + (-0.5 + y)^2 + z^2, 9 (-0.5 + y) - (0.5 + x)^2 (-0.5 + y) - (-0.5 + y)^3 + 6 (0.5 + x) z + 2 (0.5 + x)^2 z + 2 (-0.5 + y)^2 z - (-0.5 + y) z^2], Max[-7.5625 + (-0.5 + x)^2 + (0.5 + y)^2 + z^2, -9 (0.5 + y) + (-0.5 + x)^2 (0.5 + y) + (0.5 + y)^3 - 6 (-0.5 + x) z + 2 (-0.5 + x)^2 z + 2 (0.5 + y)^2 z + (0.5 + y) z^2]]
Max[-36 + x^2 + y^2 + z^2, 9 y - x^2 y - y^3 + 6 x z + 2 x^2 z + 2 y^2 z - y z^2]
Max[-36 + x^2 + y^2 + z^2, -9 y + x^2 y + y^3 - 6 x z + 2 x^2 z + 2 y^2 z + y z^2]
Max[-36 + (-3 + x)^2 + y^2 + z^2, -9 y + (-3 + x)^2 y + y^3 - 6 (-3 + x) z + 2 (-3 + x)^2 z + 2 y^2 z + y z^2]
Max[-36 + (-3 + x)^2 + (-1 + y)^2 + z^2, -9 (-1 + y) + (-3 + x)^2 (-1 + y) + (-1 + y)^3 - 6 (-3 + x) z + 2 (-3 + x)^2 z + 2 (-1 + y)^2 z + (-1 + y) z^2]
Max[-36 + (-3 + x)^2 + (-1 + y)^2 + (2.75 + z)^2, -9 (-1 + y) + (-3 + x)^2 (-1 + y) + (-1 + y)^3 - 6 (-3 + x) (2.75 + z) + 2 (-3 + x)^2 (2.75 + z) + 2 (-1 + y)^2 (2.75 + z) + (-1 + y) (2.75 + z)^2]
Min[Max[-7.5625 + (0.5 + x)^2 + (-0.5 + y)^2 + z^2, 9 (-0.5 + y) - (0.5 + x)^2 (-0.5 + y) - (-0.5 + y)^3 + 6 (0.5 + x) z + 2 (0.5 + x)^2 z + 2 (-0.5 + y)^2 z - (-0.5 + y) z^2], Max[-7.5625 + (-0.5 + x)^2 + (0.5 + y)^2 + z^2, -9 (0.5 + y) + (-0.5 + x)^2 (0.5 + y) + (0.5 + y)^3 - 6 (-0.5 + x) z + 2 (-0.5 + x)^2 z + 2 (0.5 + y)^2 z + (0.5 + y) z^2], Max[-36 + (-3 + x)^2 + (-1 + y)^2 + (2.75 + z)^2, -9 (-1 + y) + (-3 + x)^2 (-1 + y) + (-1 + y)^3 - 6 (-3 + x) (2.75 + z) + 2 (-3 + x)^2 (2.75 + z) + 2 (-1 + y)^2 (2.75 + z) + (-1 + y) (2.75 + z)^2]]

REVIEWS & COMMENTS

See what other buyers think about this model - real feedback on quality,
accuracy, and usability.
There are no reviews or comments yet. Please be the first one to write it.

Implicit Solid Model - Thing 1 Free 3D print model

Custom License (no AI)
Like this model to show appreciation to the designer.
See how many times this model was viewed.
Share this model to support the designer and boost their visibility.
File format
STL
Stereolithography<br />File Size: 5.58 MB
Provided by designer
Information and details shared directly by the model's designer.
3D printing
Indicates whether the designer marked this model as suitable for 3D printing.
Model is prepared for 3D printing
The designer indicates this model is prepared for physical 3D printing and includes printable file formats.
Units
Publish date
Model ID
Hire
Chat