# Piano ring 82 3D print model

his article is about an algebraic structure. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets.

Chapter IX of David Hilbert's Die Theorie der algebraischen Zahlkörper. The chapter title is Die Zahlringe des Körpers, literally the number rings of the field. The word ring is the contraction of Zahlring. In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

A ring is an abelian group with a second binary operation that is associative, is distributive over the abelian group operation, and has an identity element (this last property is not required by some authors, see § Notes on the definition). By extension from the integers, the abelian group operation is called addition and the second binary operation is called multiplication.

Whether a ring is commutative or not (i.e., whether the order in which two elements are multiplied changes the result or not) has profound implications on its behavior as an abstract object. As a result, commutative ring theory, commonly known as commutative algebra, is a key topic in ring theory. Its development has been greatly influenced by problems and ideas occurring naturally in algebraic number theory and algebraic geometry. Examples of commutative rings include the set of integers equipped with the addition and multiplication operations, the set of polynomials equipped with their addition and multiplication, the coordinate ring of an affine algebraic variety, and the ring of integers of a number field. Examples of noncommutative rings include the ring of n × n real square matrices with n ≥ 2, group rings in representation theory, operator algebras in functional analysis, rings of differential operators in the theory of differential operators, and the cohomology ring of a topological space in topology.

The conceptualization of rings began in the 1870s and was completed in the 1920s. Key contributors include Dedekind, Hilbert, Fraenkel, and Noether. Rings were first formalized as a generalization of Dedekind domains that occur in number theory, and of polynomial rings and rings of invariants that occur in algebraic geometry and invariant theory. Afterward, they also proved to be useful in other branches of mathematics such as geometry and mathematical analysis.

This product has no reviews yet
Piano ring 82
\$20.00
All prices are exclusive of VAT
Send your price offer to the author if you want to buy it at lower price.
Products under Royalty Free License can be used without liability to pay any license fees for<br/> multiple lifelong uses, or sales volume of final product after being paid for once. The product<br/> may not be sold, given, or assigned to another person or entity in the form it is downloaded from the site.<br/> <a href='/pages/terms-and-conditions#general-terms-of-licensing' rel='nofollow' target='_blank'>Read more</a>
Response 67% in 2.3h
3D model formats
• OBJ (.obj, .mtl)4.65 MB
• Stereolithography (.stl) (2 files)-
• Rhinoceros 3D (.3dm)4.99 MB
• 3D Studio (.3ds) -
• Autodesk FBX (.fbx) -
3D model details
• Publish date2019-02-21
• Model ID#1904824
Help